Вторник
12.12.2017
16:56
Форма входа
Календарь новостей
«  Декабрь 2017  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
25262728293031
Поиск
Друзья сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Наш опрос
Оцените мой сайт
Всего ответов: 74
РЕГУЛЯТОРЫ РОСТА РАСТЕНИЙ

Цитокинины - гормоны корневого апекса. История открытия.

 Первые стерильные культуры клеток животных удалось получить еще в начале ХХ века, однако вплоть до 1950-х годов получить устойчиво растущие культуры растительных клеток на искусственных питательных средах не удавалось.

Американец Ф.Скуг работал над проблемой получения стерильных культур клеток растений. Он работал в университете штата Висконсин поэтому его излюбленным объектом был один из сортов табака, который выращивали в этом штате - "Wisconsin-38". Из стеблей добывали сердцевинную паренхиму, помещали на искусственные среды, содержащие минеральные вещества, сахар, витамины, аминокислоты. Однако, клетки не делились. После открытия ауксина Скуг добавил ИУК в среды: вдруг растительным клеткам не хватает ауксина? Клетки паренхимы приступали к делениям, но рост быстро останавливался.

В лаборатории Скуга перепробовали самые различные добавки: экстракт дрожжей, томатный сок, сок листьев самого табака, и все безрезультатно. Небольшого успеха удалось добиться, добавив в среду кокосовое молоко.
В 1950-х годах ученые обнаружили, что наследственная информация передается от родителей к потомкам с помощью ДНК. (Как устроено это вещество и какие свойства позволяют передать информацию тогда еще не было известно). И Скуг предположил, что растительным клеткам не хватает ДНК. В лаборатории появилась банка с ДНК, добытой из молок сельди (самый дешевый источник ДНК) и ее добавляли в среду наряду с ауксинами и питательными веществами. Клетки не делились.

Открытие цитокининов состоялось благодаря ошибке, допущенной в ходе эксперимента. Чтобы среда была стерильной, флаконы со средой помещали в автоклав, где раствор нагревается выше 100╟С. Случайно режим автоклавирования был нарушен и среда вместе с ДНК перегрелась. Именно на этой среде сердцевинная паренхима табака сорта "Wisconsin-38" начала интенсивно расти. При более детальной проверке выяснилось, что в перегретом препарате ДНК из молок сельди появлялось некоторое вещество, которое на фоне ауксина вызывает активные деления клеток. В 1953 году вышла первая статья, посвященная этому явлению, а затем удалось идентифицировать вещество, вызывающее рост клеток - фурфуриладенин. По физиологическому эффекту это вещество получило тривиальное название кинетин (от греч. "Кинезис" - "деление").

Вскоре из эндосперма кукурузы удалось выделить природное вещество, которое заставляет делиться клетки в организме растения - зеатин (Zea- кукуруза). Так было положено начало открытию новой группы растительных гормонов - цитокининов.

Выяснилось также, что природные цитокинины легко разрушаются при нагревании, что объясняет первые неудачи Скуга. В растительных экстрактах содержались природные цитокинины, но поскольку среды обязательно автоклавировали, эти гормоны разрушались и не оказывали действия на клетки.

 Биосинтез и инактивация цитокининов. Биосинтез и инактивация цитокининов.
В клетке цитокинины образуются из азотистого основания аденина. К аденину присоединяется боковая изопентильная группа, что приводит к образованию цитокининового скелета. Далее происходит последовательное удаление фосфатной группы и рибозы. Самый простой из цитокининов - изопентениладенин. Изопентениладенин проявляет большую физиологическую активность, чем изопентениладенинрибозид или изопентенил-АМФ. Другие цитокинины образуются за счет модификации изопентильного фрагмента (гидроксилирование, окисление, восстановление).

Цитокинины в клетке присутствуют в активной и неактивной форме. Неактивными формами цитокининов обычно являются N7- и N9-гликозиды, а также гликозиды по гидроксилу изопентильного фрагмента. Присоединяя или отсоединяя сахара, клетка регулирует концентрацию активных цитокининов. Возможно и необратимое разрушение цитокининов, поэтому по мере удаления от апекса корня концентрация цитокининов падает.

Из арабидопсис и кукурузы выделены гены, белковые продукты которых связываются с цитокинином и имеют характерную для рецепторов структуру. Так, у белка CRE 1 (от cytokinine receptor) есть фрагмент, выступающий на наружную поверхность плазмалеммы, который связывается с молекулой цитокинина. Далее в белке расположен гистидин-киназный домен и два домена, участвующие в переносе фосфатной группы (REC -Receiver domains). Предполагают, что рецептор цитокинина взаимодействует с МАР-киназной системой трансдукции сигнала.

Цитокинины способствуют синтезу новой ДНК в клетке и контролируют S-фазу клеточного цикла у растительных клеток. Интересно, что аденин с заместителями, похожими на радикал цитокининов, входят в состав некоторых РНК. Более того, если брать синтетические аналоги цитокининов (например, бензиламинопурин), то необычный радикал (бензил) появляется в тех же самых РНК у того же самого аденина. Эксперименты с мечеными атомами показывают, что цитокинин непосредственно не встраивается в молекулу РНК целиком. Происходит лишь "переброска" радикала с молекулы цитокинина на молекулу РНК.

Эффекты цитокининов от апекса корня до апекса побега. Цитокинины оказались во многом похожими на первую из известных групп растительных гормонов - на ауксины, однако были и существенные отличия. Главное - у цитокининов совершенно иная точка синтеза. Если ауксины синтезируются в апексе побега, то цитокинины - биохимический "маркер" кончика корня. Ауксин транспортируется по растению сверху вниз и активно, а цитокинин - снизу вверх и пассивно.

Образно цитокинины можно назвать " гормонами благополучия апекса корня". Аттрагирующий эффект. Кончик корня для своего роста нуждается в питательных веществах. Минеральных солей и воды у корня в достатке, поэтому необходимо "притягивать" продукты фотосинтеза: сахара, аминокислоты и др. Этот эффект проявляется в зоне деления (т.е. в апикальной меристеме) корня.

Иногда цитокинины называют гормонами "омоложения" растительных тканей. Если обработать цитокинином лист, готовящийся к листопаду, он еще долго будет оставаться зеленым. Этот эффект был настолько впечатляющим, что физиологи растений считали "омоложение" - главным эффектом цитокининов. Однако при более внимательном рассмотрении окажется, что это - всего лишь аттрагирующий эффект. В норме перед листопадом все белковые молекулы листа разрушаются и в виде аминокислот отправляются на зимнее хранение в корень. К моменту листопада в тканях листа почти не остается азота, который был бы доступен метаболизму. Оттекают из осеннего листа и другие органические вещества, следовательно, мы имеем дело не столько со старением, сколько с запрограммированной гибелью листа от истощения (заметим, что вечнозеленые листья тропических растений обычно остаются живыми в 3-5 раз дольше, чем листья растений умеренных широт) . Зимой большая листовая поверхность опасна, поэтому происходит листопад, а питательные вещества депонируются в корне.

Если ввести в лист радиоактивный глицин и обработать одну из частей листа цитокинином, метка быстро соберется в обработанной половине листа. Нормальная физиологическая реакция состоит в том, чтобы передать питательные вещества ближе к корню (т.е. источнику цитокининов). Так как в эксперименте источником цитокининов оказалась соседняя половина листа, метка переместилась именно туда.

Таким образом, цитокинин не омолаживает лист, а просто не дает ему погибнуть от истощения, притягивая и удерживая в тканях питательные вещества.

Цитокинин и дифференцировка клеток. В зоне дифференцировки корня цитокинины способствуют образованию проводящей системы. Поскольку корень нуждается в продуктах фотосинтеза, которые по растению разносит флоэма, цитокинины (гормоны корневого благополучия) вызывают образование преимущественно элементов флоэмы.

Цитокинин рассматривается тканями как запрос на фотоассимиляты. Если ткань в принципе способна образовать хлоропласты, то даже в темноте под действием цитокинина можно добиться синтеза хлорофилла. Так, в семялодях тыквы происходит дифференцировка фотосинтезирующих тканей, в клетках пластиды превращаются в хлоропласты.

Распространяется цитокинин вверх с ксилемным током. Поскольку ксилема - мертвая ткань, она не может обеспечить ни активного транспорта, ни полярности: для этого нужны живые мембраны. В отличие от ауксинов, цитокинины транспортируются пассивно и неполярно.

О том, что цитокинины содержатся в ксилеме, догадывался еще Скуг. Если сердцевинную паренхиму стебля не отделять от слоя ксилемы, то некоторое время клетки паренхимы могли делиться (это наблюдение было сделано еще до открытия цитокининов).

В зоне вторичного утолщения цитокинины стимулируют работу камбия и образование новых флоэмных элементов. Повышенная концентрация цитокининов говорит растению о благополучном развитии корневой системы. Это означает, что нет необходимости в новых корнях. Т.е. цитокинины подавляют рост боковых корней. С другой стороны, нужны побеги, которые образуют новые листья и позволят лучше снабжать растущие корни. Под действием цитокининов начинают расти боковые почки на побегах. Таким образом, цитокинины снимают апикальное доминирование, вызванное ауксинами. Заметим, что ауксины и цитокинины - антагонисты в процессе регуляции развития боковых почек. Однако, в другом процессе - клеточных делений - они синергисты (т.е. их совместное действие усиливаеся). Традиционно упоминается реакция устьичных клеток на цитокинин: если вода поступает в лист из корня (т.е. обогащена цитокининами), устьица открываются. Если вода поступает из других органов, она бедна цитокининами (богата абсцизовой кислотой) и происходит закрывание.

Цитокинины способствуют росту бессемянных плодов. Ситуация очень напоминает соответствующий эффект ауксина. В молодом зародыше очень рано появляется корневой полюс, который начинает синтезировать цитокинины. Плод с семенами, естественно, содержит больше цитокининов, чем бессемянный. При добавлении цитокининов извне, растение считает, что в бессемянном плоде зародыши есть и проявляется аттрагирующий эффект.

ВЗАИМОДЕЙСТВИЕ АУКСИНОВ И ЦИТОКИНИНОВ.

Физиологическое действие ауксинов и цитокининов в культуре in vitro. Открытие цитокининов положило начало эре культивирования растительных клеток in vitro. Первым типом ткани, полученным из сердцевинной паренхимы табака, был каллус. В природе каллусы образуются в местах повреждения, когда растению необходимо как можно быстрее зарастить клетками шрам, заполняя его бесформенной недифференцированной массой клеток. Лишь позднее происходит дифференцировка и восстанавливаются поврежденные сосуды, покровные и механические ткани.

Клетки каллуса, в отличие от клеток апикальных меристем или камбия, делятся, располагая веретено деления в случайном направлении. В результате получается рыхлая быстро растущая клеточная масса.

Для того, чтобы клетки быстро размножались in vitro в среду нужно добавить и ауксины, и цитокинины. Только в этом случае растительные клетки начинают делиться. Показано, что ауксины активируют СDK-протеинкиназы клеточного цикла (cycline dependent kinases), а цитокинины - соответствующие циклины. Комплекс СDK-циклин необходим для запуска клеточного деления.

Изменение соотношения ауксин/цитокинин в среде приводит к существенным изменениям в развитии клеток in vitro. При преобладании ауксинов (недостатке цитокининов) начинается процесс ризогенеза (от греч. "rhizo-" - "корень"; "genesis" - "рождение"). При преобладании цитокининов (недостатке ауксинов) образуются меристемы побегов: начинается геммагенез ("gemma" - "почка растения"). Такое поведение культур клеток хорошо согласуется с функцией ауксинов и цитокининов как "гормонов благополучия" побегов и корней соответственно. Недостаток ауксинов воспринимается клетками как недостаточное развити побегов, и служит сигналом для их образования. В дифференцированных побегах происходит синтез ауксинов и баланс гормонов восстанавливается. Аналогичный механизм срабатывает при недостатке цитокининов (формируются корни).

При удалении из среды и ауксинов, и цитокининов часто в культуре клеток начинается образование биполярных структур - зародышей. У каждого из них будет свой источник цитокининов (корневой полюс) и свой источник аусинов (побеговый полюс). Такие структуры, похожие на зародыши семян, называют эмбриоидами ("embryo" - "зародыш"; "eidos" - "похожий").

Такое поведение клеток in vitro используют для создания технологий учкоренного размножения растений.

Баланс между ауксинами и цитокининами в интактном растении. Итак, для нормальной жизни в растении всегда должен существовать баланс между ауксинами и цитокининами.

Процесс вегетативного роста растений можно моделировать, рассматривая только полярный транспорт и взаимодействие ауксинов и цитокининов. Представим, что главный стебель отделен от корня. В верхней части осталась точка синтеза ауксинов, цитокинины в дефиците. Ауксин из апекса транспортируется к основанию черенка, где создается избыток этого гормона. Чтобы сохранить гормональный баланс, нужны цитокинины: в основании закладываются придаточные корни.

У оставшейся нижней части растения есть точки синтеза цитокининов, а ауксинов не хватает. Цитокинины транспортируются наверх и накапливаются около среза. Это также вызывает нарушение гормонального баланса, что приводит к активации синтеза ауксинов. Пробуждаются спящие почки или даже возникают новые из каллусной массы.

В интактном растений активные деления клеток сосредоточены на кончике корня и на кончике побега. Согласно модели, чем дальше находится орган от кончика корня, тем меньше в нем цитокинина. Апексом побега транспорт заканчивается и происходит накопление цитокинина. Ауксин сам синтезируется в апексе побега. Таким обрзом в меристеме побега концентрация цитокининов и ауксинов оказывается достаточной для поддержания клеточных делений.

Обратная ситуация наблюдается в апексе корней: ауксин накапливается т.к. апекс корня является конечным пунктом транспорта. Вместе с синтезируемыми в кончике корня цитокининами, ауксины вызывают клеточные деления в меристеме корня.

Чем больше расстояние от кончика корня до верхушки побега преодолевают гормоны, тем меньше их содержание в меристеме. Наконец, наступает момент, когда цитокинины перестают поступать в апекс побега в нужной для делений концентрации. Рост стебля вверх останавливается. Аналогично регулируется рост корня вглубь. Таким образом, полярный рост растения можно моделировать на основании баланса ауксинов и цитокининов.

В зоне вторичного утолщения делящиеся клетки расположены не случайно. По флоэме вниз перемещается ауксин, а по ксилеме вверх - цитокинин. Между этими ткаными лежит камбиальное кольцо (слой делящихся клеток). Здесь клетки находятся на "перекрестке" потоков ауксинов и цитокининов (а также фотоассимилятов и минеральных веществ), необходимых для деления клеток.

Работу камбия также можно смоделировать исходя из теории поддержания баланса фитогормонов. Если ауксин преобладает, камбий откладывает больше ксилемных элементов (чтобы обеспечить приток цитокининов из корней). Наоборот, преобладание цитокининов заставляет камбий откладывать больше флоэмы. По ней поступят новые порции ауксина и снова возникнет равновесие между двумя типами гормонов.

Заметим, что поврежденные корни или ветки гораздо хуже утолщаются. Причина этого - в низкой способности этих органов к синтезу гормонов. С другой стороны, чем больший поток гормонов проходит через ветку или корень, тем сильнее утолщение, больше "транспортных магистралей" и больше механическая прочность.

Цитокинины и паразиты растений. Грибы и бактерии за миллионы лет совместного существования с растениями гораздо лучше усвоили физиологию растений, чем человек. И у этих организмов возникли блестящие приспособления для "эксплуатации" организма растений как источника пищи. Ведь достаточно "засесть" в любом органе растения и начать подавать запросы на питательные вещества. Растение "не сообразит" и направит продукты фотосинтеза вместе с минеральными веществами к месту инфекции, чего и надо бактериям и грибам-паразитам.

Многие из грибов, вызывающих заболевания растений, научились вырабатывать цитокинины. В местах поражения возникает опухоль, из которой во все стороны растут многочисленные тонкие побеги. В народе такую структуру прозвали "ведьминой метлой".

Аналогичные механизмы используют и бактерии. Псевдомонады (Pseudomonas savastanoi) способны синтезировать не только цитокинин, но и ауксин. Они поражают сирень, бирючину, оливу и другие маслинные растения. Пораженная псевдомонадами ткань начинает интенсивно делиться, образуя каллус, и питательные вещества со своего растения "притягиваются" к месту инфекции. А это и нужно псевдомонадам. Но если псевдомонад убить антибиотиком, то рост опухоли останавливается.

Самый тонкий и специализированный механизм нарушения гормонального баланса имеют агробактерии (Agrobacterium tumefaciens). Клетки этих бактерий умеют передавать свою ДНК в ядра растительных клеток. В передаваемом фрагмента ДНК содержится информация о биосинтезе ауксинов, цитокининов и особых веществ - опинов. Опины не могут утилизироваться клетками растения, но служат источником углерода и азота для роста бактерий. Клетки растений, в которые попала такая ДНК, начинают опухолевый рост. Даже при уничтожении бактерий (обработка антибиотиками), опухоль продолжает расти, т.к. клетки продолжают производить ауксины и цитокинины за счет встроенных бактериальных генов.